1.为什么一定要有产品?
对普罗大众来讲,他不会去看论文来判断你的研究成果,也不知道你的论文有多了不起。你要跟人解释,最容易解释的方法就是你给人看看你的产品,HoloLens马上就会被人看到,我们希望有机会做一些更了不起的产品,不光是对消费者,更多是针对企业用户的产品。 我个人认为,三五年内,对AI而言最大的机会还是在企业市场中。
2.正确看待科研
很多人不明白,说这么多人做科研,怎么还没有产品化?科研就是一个很长期的东西,你要么就不要说自己做科研,要做科研就要有耐心。比如今天大家谈的热火朝天的量子计算,具体哪天量子计算机可以做出来,没有人知道。在这一点上,美国的这套系统还是值得我们学习:从大学开始,到研究所,再到工业界。以前的AT&T和IBM,再到现在的微软,很多公司愿意花很多的钱出来做长期的科研,而绝大多数的科研成果不仅仅属于本公司,只是自己的公司有可能得到利益。
这一点我们盖茨讲得非常清楚,比如苹果和微软早期的成功,很重要的就是图形用户界面,而 graphic interface 最早是施乐做出来的,我们跟他们学习。同样,今天微软做了很多了不起的事,但是可能其他一些公司,甚至一些初创公司还会做得更好,这都是很正常的。
而且,做科研是非常愉快的一件事情,做科研最愉快的事情就是根本不用担心别人在想什么,你自己拍拍脑袋想想就可以,要有一个了不起的想法——我以前是多么的享受做科研,后来被鲍尔默赶出来去做产品。
3.如何从技术研究到产品化
当然, 我们不是一个公益的研究院,对公司是有责任的,包括最重要的一件事情,就是从技术到产品的转化 。目前,AI本身今天很多的东西还在研究阶段,所以今天微软重组,把AI和研究院放在同一个部门——我觉得非常荣幸能够领导这样的部门——我们看到了非常多的机会。
怎么从技术到产品转化这个问题,可能今天最好的例子就是认知服务,其中大概2/3的技术是原来微软研究院做的,而且做了很多年,以前我们不是很清楚,一些计算机视觉的技术怎么转化成产品。但是因为有Azure,有认知服务这样的机会,很多很多的微软研究院的技术,都已经通过认知服务转化成为产品。
另外一个例子是 HoloLens,它研发的过程是“研和发,研和发”不断循环的过程 。HoloLens这些人之前就是做Kinect,Kinect做出来微软研究院就做了Kinect Fusion,又做了一个项目叫Holodesk,如果是三维的东西,你怎么样加一些三维的虚拟物体进去。后来微软有一批非常了不起的做产品和设计的工程师,他们想到要在此基础上做成HoloLens,在这个过程当中,里面很多计算机视觉、语音的技术都是微软研究院一起做的,是一个共同研发的过程。
4.AI部门的产品规划
可以挣一些钱,定个小目标,这是非常重要的。但是,更重要的事情是 AI 这个部门成立之后,我们要想清楚如果我们真的觉得AI会颠覆更多的行业应用,在颠覆的过程当中,我们的机会在哪。
(1)对现有产品AI化
比如Office等跟AI结合,将会有哪些颠覆性的内容产生,有什么新的产品出来,有什么新的功能出来,这边的话我们进展得非常好。
AI的三大方面:第一,你要有非常强大的运算能力;第二,你要有非常了不起的算法;第三,你一定要有自己的数据。
我用微软的例子来介绍一下,在微软,我们当然相信, 微软所有的产品都必须要AI化,重新去定义这样的产品 。
我们现在很注重的地方是两个方面, 一个是在所有的Office产品 ,在主题演讲中我给大家看了 PowerPoint一个功能,就是翻译(translate)。其实PowerPoint他们还做了另外一个,我自己非常喜欢的,所谓的图说生成(image caption):来一张照片,PowerPoint图说生成可以自动给你出图片说明,这个我们已经做得相当好了。
PowerPoint很多人用。这样的数据可以帮助我们不断改善一些算法。前不久我们也发布Word,Word里面使用AI技术,这也非常非常重要。
这里面还有很多AI的技术都才刚刚开始,我自己觉得Office最激动人心的技术就是所谓的机器阅读。前不久微软买了一个加拿大的初创公司叫做Maluuba ,主要就是做这方面的工作,用自然语言、深度学习的方法来做这个东西。深度学习里面一个很重要的问题,就是回答问题。我觉得对Office的影响会非常巨大,所以我们AI部门的同事和Office的同事一起在做。
另外一个就是在云这里,大家合作非常多,你到Azure.com主页的产品里面,Cognitive Services的内容放置最显著的位置上,这是Scott和我,跟我们产品团队的同事review了以后决定,Cognitive Services会变成Azure的重中之重。Windows还有很多AI,像HoloLens还有很多AI的技术,计算机视觉、计算机语音方面。
(2)挖掘新的产品线:决定做什么和不做什么
另外一个你要去想,新的产品线在哪里,你有没有一条新的产品线出来,三五年以后可以做到十亿美元的生意。要思考,你有没有这样的业务,五到十年可以做到一百亿美元的生意。如果有,当然要放马去追求这样的机会。
所以我们现在 整个AI部门最重要的事情,就是决定要做什么,决定不做什么 。